Package: scGate 1.6.2
scGate: Marker-Based Cell Type Purification for Single-Cell Sequencing Data
A common bioinformatics task in single-cell data analysis is to purify a cell type or cell population of interest from heterogeneous datasets. 'scGate' automatizes marker-based purification of specific cell populations, without requiring training data or reference gene expression profiles. Briefly, 'scGate' takes as input: i) a gene expression matrix stored in a 'Seurat' object and ii) a “gating model” (GM), consisting of a set of marker genes that define the cell population of interest. The GM can be as simple as a single marker gene, or a combination of positive and negative markers. More complex GMs can be constructed in a hierarchical fashion, akin to gating strategies employed in flow cytometry. 'scGate' evaluates the strength of signature marker expression in each cell using the rank-based method 'UCell', and then performs k-nearest neighbor (kNN) smoothing by calculating the mean 'UCell' score across neighboring cells. kNN-smoothing aims at compensating for the large degree of sparsity in scRNA-seq data. Finally, a universal threshold over kNN-smoothed signature scores is applied in binary decision trees generated from the user-provided gating model, to annotate cells as either “pure” or “impure”, with respect to the cell population of interest. See the related publication Andreatta et al. (2022) <doi:10.1093/bioinformatics/btac141>.
Authors:
scGate_1.6.2.tar.gz
scGate_1.6.2.zip(r-4.5)scGate_1.6.2.zip(r-4.4)scGate_1.6.2.zip(r-4.3)
scGate_1.6.2.tgz(r-4.4-any)scGate_1.6.2.tgz(r-4.3-any)
scGate_1.6.2.tar.gz(r-4.5-noble)scGate_1.6.2.tar.gz(r-4.4-noble)
scGate_1.6.2.tgz(r-4.4-emscripten)
scGate.pdf |scGate.html✨
scGate/json (API)
NEWS
# Install 'scGate' in R: |
install.packages('scGate', repos = c('https://carmonalab.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/carmonalab/scgate/issues
- genes.blacklist.default - Blocklist of genes for dimensionality reduction
- query.seurat - Toy dataset to test the package
filteringmarker-genesscgatesignaturessingle-cell
Last updated 6 months agofrom:7d3189607d. Checks:OK: 6 WARNING: 1. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 05 2024 |
R-4.5-win | OK | Nov 05 2024 |
R-4.5-linux | WARNING | Nov 05 2024 |
R-4.4-win | OK | Nov 05 2024 |
R-4.4-mac | OK | Nov 05 2024 |
R-4.3-win | OK | Nov 05 2024 |
R-4.3-mac | OK | Nov 05 2024 |
Exports:combine_scGate_multiclassgating_modelget_scGateDBget_testing_dataload_scGate_modelperformance.metricsplot_levelsplot_treeplot_UCell_scoresscGatetest_my_model
Dependencies:abindaskpassassortheadbase64encBHBiobaseBiocGenericsBiocNeighborsBiocParallelbitopsbslibcachemcaToolscliclustercodetoolscolorspacecommonmarkcowplotcpp11crayoncrosstalkcurldata.tableDelayedArraydeldirdigestdotCall64dplyrdqrngevaluatefansifarverfastDummiesfastmapfitdistrplusFNNfontawesomeformatRfsfutile.loggerfutile.optionsfuturefuture.applygenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2ggrepelggridgesglobalsgluegoftestgplotsgridExtragtablegtoolsherehighrhtmltoolshtmlwidgetshttpuvhttricaigraphIRangesirlbaisobandjquerylibjsonliteKernSmoothknitrlabelinglambda.rlaterlatticelazyevalleidenlifecyclelistenvlmtestmagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimeminiUImunsellnlmeopensslparallellypatchworkpbapplypillarpkgconfigplotlyplyrpngpolyclipprogressrpromisespurrrR6RANNrappdirsRColorBrewerRcppRcppAnnoyRcppArmadilloRcppEigenRcppHNSWRcppProgressRcppTOMLreshape2reticulaterlangrmarkdownROCRrprojrootRSpectraRtsneS4ArraysS4VectorssassscalesscattermoresctransformSeuratSeuratObjectshinySingleCellExperimentsitmosnowsourcetoolsspspamSparseArrayspatstat.dataspatstat.explorespatstat.geomspatstat.randomspatstat.sparsespatstat.univarspatstat.utilsstringistringrSummarizedExperimentsurvivalsystensortibbletidyrtidyselecttinytexUCellUCSC.utilsutf8uwotvctrsviridisLitewithrxfunxtableXVectoryamlzlibbioczoo
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Combine scGate annotations | combine_scGate_multiclass |
Model creation and editing | gating_model |
Blocklist of genes for dimensionality reduction | genes.blacklist.default |
Load scGate model database | get_scGateDB |
Download sample data | get_testing_data |
Load a single scGate model | load_scGate_model |
Performance metrics | performance.metrics |
Plot scGate filtering results by level | plot_levels |
Plot model tree | plot_tree |
Plot UCell scores by level | plot_UCell_scores |
Toy dataset to test the package | query.seurat |
Filter single-cell data by cell type | scGate |
Test your model | test_my_model |