Package: scGate 1.6.3

Massimo Andreatta

scGate: Marker-Based Cell Type Purification for Single-Cell Sequencing Data

A common bioinformatics task in single-cell data analysis is to purify a cell type or cell population of interest from heterogeneous datasets. 'scGate' automatizes marker-based purification of specific cell populations, without requiring training data or reference gene expression profiles. Briefly, 'scGate' takes as input: i) a gene expression matrix stored in a 'Seurat' object and ii) a “gating model” (GM), consisting of a set of marker genes that define the cell population of interest. The GM can be as simple as a single marker gene, or a combination of positive and negative markers. More complex GMs can be constructed in a hierarchical fashion, akin to gating strategies employed in flow cytometry. 'scGate' evaluates the strength of signature marker expression in each cell using the rank-based method 'UCell', and then performs k-nearest neighbor (kNN) smoothing by calculating the mean 'UCell' score across neighboring cells. kNN-smoothing aims at compensating for the large degree of sparsity in scRNA-seq data. Finally, a universal threshold over kNN-smoothed signature scores is applied in binary decision trees generated from the user-provided gating model, to annotate cells as either “pure” or “impure”, with respect to the cell population of interest. See the related publication Andreatta et al. (2022) <doi:10.1093/bioinformatics/btac141>.

Authors:Massimo Andreatta [aut, cre], Ariel Berenstein [aut], Josep Garnica [aut], Santiago Carmona [aut]

scGate_1.6.3.tar.gz
scGate_1.6.3.zip(r-4.5)scGate_1.6.3.zip(r-4.4)scGate_1.6.2.zip(r-4.3)
scGate_1.6.3.tgz(r-4.5-any)scGate_1.6.3.tgz(r-4.4-any)scGate_1.6.2.tgz(r-4.3-any)
scGate_1.6.3.tar.gz(r-4.5-noble)scGate_1.6.3.tar.gz(r-4.4-noble)
scGate_1.6.3.tgz(r-4.4-emscripten)
scGate.pdf |scGate.html
scGate/json (API)
NEWS

# Install 'scGate' in R:
install.packages('scGate', repos = c('https://carmonalab.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/carmonalab/scgate/issues

Datasets:

On CRAN:

filteringmarker-genesscgatesignaturessingle-cell

8.36 score 100 stars 163 scripts 667 downloads 11 exports 170 dependencies

Last updated 16 days agofrom:e2c964b69f. Checks:6 OK, 2 FAILURE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 03 2025
R-4.5-winOKFeb 03 2025
R-4.5-macOKFeb 03 2025
R-4.5-linuxOKFeb 03 2025
R-4.4-winOKFeb 03 2025
R-4.4-macOKFeb 03 2025
R-4.3-winOUTDATEDDec 05 2024
R-4.3-macOUTDATEDDec 05 2024

Exports:combine_scGate_multiclassgating_modelget_scGateDBget_testing_dataload_scGate_modelperformance.metricsplot_levelsplot_treeplot_UCell_scoresscGatetest_my_model

Dependencies:abindaskpassassortheadbase64encBHBiobaseBiocGenericsBiocNeighborsBiocParallelbitopsbslibcachemcaToolscliclustercodetoolscolorspacecommonmarkcowplotcpp11crayoncrosstalkcurldata.tableDelayedArraydeldirdigestdotCall64dplyrdqrngevaluatefansifarverfastDummiesfastmapfitdistrplusFNNfontawesomeformatRfsfutile.loggerfutile.optionsfuturefuture.applygenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2ggrepelggridgesglobalsgluegoftestgplotsgridExtragtablegtoolsherehighrhtmltoolshtmlwidgetshttpuvhttricaigraphIRangesirlbaisobandjquerylibjsonliteKernSmoothknitrlabelinglambda.rlaterlatticelazyevalleidenbaselifecyclelistenvlmtestmagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimeminiUImunsellnlmeopensslparallellypatchworkpbapplypillarpkgconfigplotlyplyrpngpolyclipprogressrpromisespurrrR6RANNrappdirsRColorBrewerRcppRcppAnnoyRcppArmadilloRcppEigenRcppHNSWRcppProgressRcppTOMLreshape2reticulaterlangrmarkdownROCRrprojrootRSpectraRtsneS4ArraysS4VectorssassscalesscattermoresctransformSeuratSeuratObjectshinySingleCellExperimentsitmosnowsourcetoolsspspamSparseArrayspatstat.dataspatstat.explorespatstat.geomspatstat.randomspatstat.sparsespatstat.univarspatstat.utilsstringistringrSummarizedExperimentsurvivalsystensortibbletidyrtidyselecttinytexUCellUCSC.utilsutf8uwotvctrsviridisLitewithrxfunxtableXVectoryamlzoo

Index of scGate vignettes

Rendered frommake.index.Rmdusingknitr::rmarkdownon Feb 03 2025.

Last update: 2022-12-21
Started: 2022-12-21